Contents

SECTION I. Introduction
- General solvers for engineers
- MATLAB capabilities
- Programming in MATLAB

SECTION II. GUI development
- Basic concepts and definitions
- Steps of development
- Illustrative examples

SECTION III. Sparse matrix methods
- Manipulation of sparse matrices in MATLAB
- Visualization of sparse matrices
- Library of functions

SECTION IV. Demonstrating examples: Network applications
- Power balance equations
- Numerical techniques for solving nonlinear equations
- Solution of network equations
- Flow chart and implementation for power flow analysis

SECTION V. Demonstrating examples: Transient stability analysis
- Modeling issues
- Equilibrium point calculations
- Trajectory calculations
- Two area criteria for simple systems
- Two area criteria for big systems
- Stability margins and calculations
- Incorporating stabilizing controls into trajectory calculations

SECTION VI. Demonstrating examples: Voltage stability and margin
• Modeling issues
• Loading levels and voltage stability
• Simple systems and calculation examples for insights

SECTION VII. Demonstrating examples: Fault analysis and relay settings
• Modeling of faults
• Modeling of relays
• Evaluation of relay operation using fault transients
• Evaluation of relay design using phasors

SECTION VIII. Conclusions
• Future extensions of existing MATLAB libraries
• Building your own applications based on the examples presented in the course